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Abstract.  Strain localization and dislocation pattern formation are typical features of plastic deformation in
metals and alloys. Glide and climb dislocation motion along with accopanying production/annihilation processes of
dislocations lead to the occurence of of instabilities of initially uniform dislocation distributions. These instabilities
result into the development of various types of dislocation microstructures, such as dislocation cells, slip and kink
bands, persistent slip bands, labyrinth structures, etc., depending on the externally applied loading and the intrinsic
lattice constraints. The Walgraef-Aifantis (WA) model is an exemple of a reaction-diffusion model of coupled
nonlinear equations which describe microstructure formation of forest (immobile) and gliding (mobile) dislocation
densities in the presence of cyclic loading. This paper briefly discusses two versions of the WA model and focus
on a finite differences, second order in time Cranck-Nicholson semi-implicit scheme, with internal iterations at
each time step, for solving the model evolution equations in two dimensions..
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1. The Walgraef-Aifantis (WA) model

In the spirit of earlier dislocation models derived for exemple by Ghoniem et al. (1990) for creep, or by
Walgraef and Aifantis (1985, 1986, 1997), by Schiller and Walgraef (1988), and by Kratochvil (1979), for
dislocation microstructure formation in fatigue, the dislocation population is divided into static dislocations,
which may result from work hardening and consist in the nearly immobile dislocations of the “forest”, of subgrains
walls or boundaries, etc., and the mobile dislocations which glide between these obstacles. One has thus to derive
coupled rate equations for the static and mobile dislocation densities, ps and p,,. For the sake of simplicity, we
shall consider single crystals, oriented for single slip. These dislocations are related to the plastic strain rate via
the Orowan relation:

€p = bpmvy (1)

where b is the length of the Burgers vector, p,, is the total mobile dislocation density and v, is the glide velocity
in the primary slip band. Time is measured in cycles of loading. Although this relation is, in principle, valid
for mean values we will consider that it is also valid locally.

The internal stress is defined by the relation:

b
N N> 2
0i = 5 +Euby/p (2)

where the first contribution comes frm obstacles such as precipitates or pre-existing walls separated by an
effective spacing A (u is the shear modulus). The second part is the contribution from the static dislocation
population which also opposes dislocation motion. The internal strees reduces the effective stress acting on the
dislocations and is defined as:

Oc = 0q — 05 (3)
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where o, is the applied stress. Finally, the glide velocity is related to the effective stress via appropriate
phenomenological relations expressing the fact that individual dislocation motion is initiated when the effective
stress acting on a dislocation exceeds the yeld stress. One may consider, for exemple:

Vg X 0e—0¢ (0> 00) (4)

vy = 0 (0, <o09) (5)
where oy is the yeld strength.

The essential features of the dislocation dynamics in the plastic regime are, on the one side, their mobility,

dominated by plastic flow, but which also includes theremal diffusion and climb, and, on the other side, their
mutual interaction process, the more important being;:

e Multiplication of static dislocations within the forest;
e Static recovery in the forest via static-static anihilation processes;

e Freeing of static dislocations: when the effective stress increases and exceeds some threshold, it disturbs
the local structure of the forest and, in particular, destabilize dislocation clusters which decompose into
mobile dsilocations. The freeing of forest dislocations occurs with a rate 3, which depends on the apllied
stresses and material parameters;

e Pinning of mobile dislocation by the forest. Effectively, mobile dislocations may be immobilized by the
various dislocation clusters forming the forest. The dynamical contribution of such processes is of the
form G(ps)pm, where G(ps) = gnp? is the pinning rate of a mobile dislocation by a cluster of n static
ones. The Walgraef-Aifantis (WA) model considers n = 2.

The resulting dynamical system may then be written as:

9ps

. D V?ps+0 — Usdcpg — Bps + 'YP?pm (6)
Opm
5 = DmViem+Bps —105pm (7)

where D, represents the effective diffusion within the forest resulting from the thermal mobility and climb
and D,, represents the effective diffusion resulting from the glide of mobile dislocations between obstacles
(D, > Dy). The diffusion coefficient D, is positive in the present case, but it may become negative, when
sweeping or correlation effects are taken into account (Kratochvil and Saxlova), leading to the instability of
uniform forest dislocations from the very beginning. The coefficient d. is the characteristic length of spontaneous
dipole collapse. This length, or at least its order of magnitude, may be, in principle, evaluated from microscopic
analysis (Mughrabi, 1979). [ is the rate of dislocation freeing from the forest and is associated with the
destabilization of dislocation dipoles or clusters under stress. Numerical dislocation dynamics simulations show
that in BBC crystals, for exemple, there is a critical value of external applied stresses above which dislocation
dipoles become unstable. This value is a decreasing function of the distance between dipole slip lines. If the
forest may be considered as an ensemble of dipoles with a mean characteristic width, the treshold stress for
destabilization, or freeing, oy, could be extracted from such simulatins. More extended numerical analysis
could include higher order dislocation clusters and provide the dependence of the threshold strss on the forest
dislocation densitty. The freeing rate is should thus be zero below the freeing threshold, and an increasing
functionof the applied stress above it. Hence, 8 ~ (y(o, — o)™ for o, > oy, n being a phenomenological
parameter.

2. The modified WA model: effect of gradient terms

The approximation of mobile dislocation diffusion is controversial and may be lifted. To do so, the mobile
dislocation density, pn, is divided into two subfamilies representing the dislocation gliding in the direction of
the Burgers vector (p;) and in the opposite one (p;,), with p,, = pif. + p7...

For crystals with well-developed forest density, and oriented for single slip, we now write (with v, oriented
along the x direction):

Ips

E = st2/)s +o0— ’Usdcpi — Bps + 7P§Pm (8)
opt B

S = ~Velepi+ 505 =00 (9)
pm -, B -

T Vagp + Ps = P3P (10)
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or:
8@;: = DV%p, + 0 —vgdep? — Bps + 702 pm (11)
ag;;” = —VaUgpm + gps —03Pm (12)
ag—f‘ = —VaUgpm — ’ypgam (13)

where o, = pf. — p, is the density of geometrically necessary dislocations. This variables evolves faster than
the other two and may be adiabatically eliminated, leading to the following system, which includes a nonlinear
diffusion term in the equation of p,,:

9ps

o0 = DsVipst o —videpl = Bps +10ipm (14)
Opm v
“or = vx/y_;gvzvgpm + Bps — 'ngpm (15)

3. The numerical scheme for solving the WA model

In order to solve the modified WA model, we use a numerical scheme based on a one proposed by Christov
and Pontes (2002). Equations (14) and (15) are solved numerically in two-dimensional rectangular domains,
through the finite difference method, using a grid of uniformly spaced points, a second order in time Cranck-
Nicholson semi-implicit method with internal interations at each time step, due to the nonlinear nature of
the implicit terms. The proposed scheme is splitted in two equations using the Stabilizing Correction scheme
(Christov and Pontes, 2002, Yanenko, 1971). The first half-step comprises implicit derivatives with respect to
x and explicit derivatives with respect to y. In the second half-step, the derivatives with respect to y are kept
implcit and those with respect to = are explicit. The splitting scheme is shown to be equivalent to the original
one.

3.1. The target scheme

The target second order in time, Cranck-Nicholson semi-implicit scheme is:

n+1 n n+1 n n+1 7
Ps — Ps _ n+1/2 Ps +ps n+1/2 Ps +ps n+1/2
=5 = A =5 1A =5 16
n+1 n n+1
Pm'~ — Pm n+1/2 Pm + Pm n+1/2
= A fm 1 FPm 17
At 2 SRREL (17)
where n is the number of the time step. Upon including the 1/2 factor in the operators AZH/ 2, AZH/ % and
A2 we obtain:
putt — pt 1/2 1 1/2 1 n+1/2
S = ATV (T ) AT (0 ) 4 A (18)
n+1 n
P A () + (1)

w2 A2 ang ALTY2 are defined as:

The operators A and the functions fI""'/% and fo+!/?

A2 - %aa_; _ ivsdc (@) — g (20)

AZ+1/2 _ %aa_; _ ivsdc (M) — g (21)

nt2 a4l (psﬂ%) (o + i) (22)

AZH/Q _ 10 l Vg 22%] PN <M> (23)
200 |y (ot +pz) J2]7 0% ?

;+1/2 ~ 3 (P?H;‘ P?) (24)
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3.2. Internal iterations

Since the operators AZTY2 ATTY/2 and ASH/Q, as well as the functions flnﬂ/2 and f;H/Q contain terms
in the new stage, we do internal iterations at each time step, according to:

n,k+1 _ n

Ps Ps n n n n n n n+1/2
At = Am+1/2 (ps7k+1 - ps) + Ay+1/2 (ps7k+1 - ps) + fl +/ (25)
n,k+1 n
Pm — Pm n+1/2 [ n n n41/2
At = A2+ / (prr“zk+1pm) + f2+ / (26)

where the superscript (n, k 4+ 1) identifies the “new” iteration, (n, k) and n stand for the values obtained in the

previous iteration and in the previous time step, respectively. The operators AL T'/2, AZH/ 2, A;H/ % and the

functions f7/% and f7/? are redefined as:

D, 0 1 p
ntr/2 _ Hs 9 1 n+1/2 _ 2
Az 5 om2 1% 4 0
D, 9 1 p
nt1/2 _ Hs 90 1 n+1/2 _ 2
AT S por — gUsdeS 1 (28)
n Y (an 2 n
P = ot g (5772) " (o + o) (29)
o v 0 2
a2 9 (v O _ ~ (gnt1/2 30
2 or %y (Sn+1/2)2 oz 9 v ( ) (30)
n,k n
;erl/Q — ﬁSnJ’_l/Q, Where: Sn+1/2 — % (31)

The iterations proceed until the following criteria is satisfied:

n,K+1 _ n,K n,K+1 _ n,K
max||p Petll s and max||py; Pl _ s
n,K n, K

max|[ps™" || max||pn” ||

in all grid points, for a certain K. Then the last iteration gives the value of the sought functions in the “new”

. def def
time step, p?t! ‘= p K+l ot pntl = pr.K+L

3.3. The splitting of the p; equation

The splitting of Eq. (25) is made according to:

ﬁs;t/)? = ATV 4 AT P L (AZ+1/2 +AZ+1/2) o (32)
L (i (33)

In order to show that the splitting represents the original scheme, we rewrite Egs. (32) and (33) in the form:
(E — At A:“/?) Ps = (E + At AZ“/Q) P+ At T2 4 (At APFTL2 LAt AZ“/Q) o" (34)
(E _ At AZ“/Q) PR = fo— AEATHY2pn (35)

where F is the unity operator. The intermediate variable p; is eliminated by applying the operator (E — At AZH/ 2)
to the second equation and by summing the result to the first one:
n+1/2 n+1/2 n,k+1 __ n+1/2 n
(EfAtAz /)(EfAtAy /)ps 7(E+AtAy /)psf (36)
n n n n+1/2 n n n
(B = AtAZT2) ALATT200 + A FIE 4 (AEAZRY2 4 ALATT2) g (37)
this result may be rewritten as:

(EJrAtz AZ+1/2AZ+1/2) — At (A:+1/2 +AZH/2) (p?,kJrl + ") JrAtﬁwl/?

or either:
k+1 _ . n

7, n,k+1 _ n
(E+At2 A:+1/2Aryz+1/2) Ps 7 Ps _ (A:+1/2+Aryz+1/2) Ps 5 Ps +le+1/2 (38)

4
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A comparison with Eq. (25) shows that Eq. (38) is actually equivalent to the first one except by the defined
positive operator having a norm greater than one,

B=E+ A AJTEAIT? = B4 O (A?)

which acts on the term (p™*+1 — pm) /At. This means that this operator does not change the steady state
solution. Furthermore, since ||B|| > 1 the spliting scheme is more stable than the original scheme.

3.4. Spatial discretization

The grid is “staggered” and the discretization of the diffusive term of Eq. (15) is made according to the
following formula, which preserves the conservation law implicit in the divergence:

0 [v, 0 07 v, 0 gt
ox ~(

e 9ol ~ Al i
yp? oz 9" } Oz | y(Snt1/2)2 9z 2

Upon writting:
Aty
4’7(Sn+1/2)2

]

Qij =

we replace the diffusive term of p,, by:

At 0 [ v, O

5 9z L—é%%ﬁ'm} ~ (39)
Qi + Qi) 1= ()i = (i) = (Qugmr + Qu) 15 ()i = (pm)ijmr) = (40)
(Qij—1 + Qi) z—i(pm)i,j—l —(Qij—1 = 2Qi; + Qijt1) (Pm)iy + (Qij + Qijv1) (Pm)ij+1 (41)

The diffusive terms of Eq. (14) are written in discrete form by using the usual three points centred formula, of
second order. Neumann boundary conditions are used in the integration of the WA model, with derivatives in
the direction perpendicular to the walls equal to zero. The algebraic linear systems were solved using a routine
with gaussian elimination and pivoting, written by C. I. Christov, from the University of Louisiana at Lafayette.

4. Results

We present the result of one simulation with the nonlinear difusion of p,,, run in a square box with 20um x
5um, using a grid containning 3000 x 750 points. The initial condition consists of the time independent uniform
base state plus a random with zero mean.

The model parameters adopted in the simulation are v, = lumem ™!, d. = 2.5 2um, D, = 3x103um?cy 1,
vy =10%umey™, v =2x 1072, o = 250pum~2cy~!. The simulations were run with a time step of 2.5 x 10~ 3cy.

During the simulations, we monitore the velocity of evolution of the patterns, by measuring;:

L] i 1T = pl 2 e = ol
=L
At Zij |p?+1| + Zi_j |p%+1

where the summations are made over all points (7, j) of the grid. The simulations proceeded while the velocity
of evolution of the patterns is above a specified value.

The results are presented in the followig figures. Figs. (1) to (4) show selected frames of the time evolution
of ps. The simulation evolves to a set of walls parallel to the slip direction. Fig. (6) shows the time evolution
of L1, the number of iterations per time step and the evolution of the maximum of p.

1

(42)
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t=1.00 t=3.00

Figure 1: Time evolution of p, (part 1).
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t=0.00 t=0.25

t=1.00 t=3.00

t =209.0

t = 300.0

Figure 3: Time evolution of p,, (part 1).
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t =400.0 t=572.0

t=691.0 t =1635.0

t = 1900.0 t =1936.0

t = 2000.0 t = 2100.0

t = 2800.0 t = 3400.0

t = 3800.0 t = 3900.0

t = 4600.0 t = 5648.0

Figure 4: Time evolution of p, (part 2).



Proceedings of the ENCIT 2006, ABCM, Curitiba — PR, Brazil — Paper CIT06-0856

Figure 5: 3D figures of the time evolution of p;.
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Figure 6: Curves of Ly x t, maz(ps) X t and number of iterations xt.
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